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SUMMARY

Microcomputer-based algorithms for lognormal distribution parameter
estimation are presented. A program diskette will be made available upon
request. For given data the parameters (three or two) are estimated (i) by means
of the moments, and (ii) by means of the maximum-likeiihood principle.
Maximum-likelihood estimation is done in two different ways, (i) by means of
the derivative equations which result from the logarithmic likelihood function,
and (ii) by means of direct optimization of the logarithmic likelihood function
itself. Moment estimates are used as starting values for the optimization
process.
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I. INTRODUCTION

The lognormal probability distribution class is defined by its probability density
function (PDF)

fW() exp - (2a2) 1 [log (xX) _- 2 x> >()

0o .X's X

The distribution parameters are: shift X E R , shape a > 0, and scale p E R. The
scaling property of p becomes evident under the transformatio,7 P = log 2 , 2' > 0, so
that log (x-X) - p = log [(x-X) - 1.

The lognormal PDF (*) is unimodal. It takes exactly one maximum in the internal
(X,oo) which is located at x = X + exp (p- 2 ) (mode). It is of diffusion type, i.e., it is
generated by a one-dimensional parabolic differential equation of Fokker-Planck type.

Two algorithms for estimation of the three parameters of (") relative to given
statistical data are presented which are based on the maximum-likelihood (ML)
principle. Both can be used for sample (raw) data as well as histogram (grouped) data.
One of them utilizes the three equations which are obtained by equating to zero the
three first partial derivatives of the associated logarithmic likelihood function (LL).
Two of the parameters (shape and scale) can be eliminated so that only one equation,
h(X)= 0, actually remains to be solved. The analytical background of this algorithm is
not new. The best account of it may be found in [i]. The numerical, microcomputer
oriented, algorithmic approach presented in this report is new, however, and highly
efficient.

The other algorithm is based on direct optimization of the LLF associated with the
PDF (N). It may be somewhat slower to execute than the cther one, but it has the
advantage of avoiding the problems created by multiple roots of the equation h(X) = 0.
As a matter of fact, if the estimation problem has a solution at all, h(X) has at least
two distinct zeros.

In many practical situations, the shift parameter is known to have a specific value
X". In this situation the general three-parameter problem reduces to a two-parameter

one. It is easily solved by means of the ML derivative equations approach. The ML
optimization algorithm in the two-parameter case uses a LLF which, for programming
efficiency, is maintained as a function of three variables in an artificial way (see Sec.
VIIIA).

Moment estimates of the parameters (two or three depending on whether the shift
parameter is known or not) are easily obtained. They are used as starting values for
the ML optimization algorithm.
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Questions of hypothesis justification and goodness of fit are cut3ide the framework
of this report and, thus, are not addressed here.

A program diskette will be made available upon request.

II. THE DIFFUSION CHARACTER OF THE LOGNORMAL DISTRIBUTION

It is well known [21, [31 that the function

f(x.t) F (b) exp - b- 1 x)2 , x ER. (1)

with

f [4irt] 112  z (t) /2 (11.2)
b = b(t) I2o( - 1 (1 exp 2 z 01] 12 r x

is the delta function initial condition (at x = 0, t = 0) solution of the autonomous
Fokker-Planck equation

WZ (X.' )]. E [D(x) z (x,t)] x - Z t (x,t,) - 0 .xc E t > 0

A(X) = o( > 0 (diffusion coefficient) , (11.3)

D(x) =- x (drift coefficient) .

The subscripts in (11.3) signify partial derivatives. For r 0, (11.3) reduces to the
standard heat equation.

With t in (1.2) considered as a parameter the function ([1.1) becomes the normal
(Gauss) PDF with scale parameter b
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The transformation x = log b1-ly generates from (11.1), after y has been replaced
by x , the function

g~~x~t) d lo <t ~ = (FII bX)- exp - b 2 log2 -d I (X.4

with b = b(t) given by (11.2). (For details on this kind of PDF transformations the reader
is referred to [4,(5.6)].) For any fixed t > 0 and with b = j/2-r, log 2 = p, this
function takes the form (") with X = 0. The shift parameter X in (") is !mmaterial in
this context.

The same transformation applied to the differential equation (11.3) leads to the
autonomous Fokker-Planck equation

[A'0(x) w(x,t)]x .- [DW(x)w(x,t)]x- wt(x,t) 0

AW(x) =oxX2 ,(11.5)

DW(x)= [oC-' log 'xIx ,)

of which the function g(xt) defined in (11.4) is a solution. As a matter of fact, the
function

V W (x 't,,) = (F T o)1-i ex o- [ lo , x-, _ e tlog 2f_ I- Y]2

with b = b(t) again defined by (11.2), is the delta function initia' condition (at x = y, t =

0) solution of (11.5). Relative to applications, for example in nucleation evolution
processes [5, Secs. 5.3.1, 5.3.31, it is of interest to note that the scale parameter

P = log [~~i)exp-t]

depends on time t unless the drift parameter r is zero.

3



111. DATA SETS

In population estimation problems the parameter vector P = (X,plJ) of the
lognormal distribution class (N) is to be specified from a given set of N observations.
(In general terms, the observations represent not necessarily distinct i.i.d. sample
values of a random variable which is assumed to be distributed according to some PDF.)

It may be assumed that the given observations form a set of M N distinct
elements x I < x2 < ... < xM , located on a coordinate axis of x , each of absolute

M
frequency (integral multiplicity) f > 1, N = Z fav > 1.

v=l

In histogram estimation problems, the parameter vector P (X,o,p) of (N) is to
be specified from a given set of absolute frequencies fav - 0 as3ociated with adjacent
class intervals of the form [a+(v- I )Aa, a - vta) (v=l ... M), a E R , Aa > 0, of equal
length Na , located on a coordinate axis of x . Actually, the vcctor P is to be
specified form the set (xv, fav)} of the coordinate pairs (x v , fav) with x, taken as
the midpoint of the class interval with number v , i.e., xv = a - (v-I/2)La. In this

sense the histogram estimation problem is a curve fitting problem.

There is a variant of the histogram estimation problem which is based on given
data sets ((x v , fav)) with arbitrarily spaced observations x1 < x2 < ... < xM.

It is convenient to have a uniform notation to cover all of these estimation
problems. Therefore, it will be assumed that the given data are of the general form of
a set of ordered pairs ((xv, fav)) (v=l, ... M) with x1 < x 2 < ... < x M , and M ! N

fa ra. In population estimation problems N ! N, fav 2 1, whereas in histogram
1V=1

estimation problems M < N, fav > 0 (v=2. M-), fal 2! 1. faM > 1, and xv = a- (v-

1 /2)Aa.

The shift parameter X , in either case, now is necessarily restricted to the half-
interval X < x1 .

For the analytical description of the estimation problem it is also convenient to
M

introduce the relative frequencies f. = N 1 f z fV = 1.
V=l

It may happen that a value XN is known for the shift pardmeter, either from
physical or other evidence. This case, which reduces the three-parameter problem to a
two-parameter one with only a and j unknown, is incorporated in the general
estimation algorithms.

4



IV. THE MOMENTS

The first three population moments for the PDF(W) are given by

00

M1 = f xf(x)dx = ,e4 1/2

x

3= j(x-l) 2 f(x)dx

x

M2 > 0, M3 >0 since w > 1.

The corresponding sample moments are, with the notation conventions introduced
in Sectiun III,

m1 = x = xV
v=1

V=I

V=1

Also of interest are the moment coefficients of skewness,

0<3(cO) = M2 3/21"13 = (w-2)(w-1)1/2

and

-3/2a3 = m2  i3 .

It shouid be observed that the number a3 may turn out to be nonpositive for a given

data set whereas ox3 , which has been derived from the theoretical moments, is

5



always positive. Therefore, if a3 < 0, moment estimation of the lognormal parameters
is impossible. The reader is .eferred to [D, Sec. 51 for additional remarks.

Estimation of the three parameters X, a, and p for the PDF () can now be
accomptished as follows. Since 0(3 is independent of pj and X , the equation a3

0(3 , in which a3 is a known number, leads to the equation

p(() = W2( -3) (4+ a2) = 0

Application of Descartes' Rule of Signs [6, Lemma 6.21 shows that p(w) has exactly one
simple positive zero woc which, obviously, is greater than unity. It provides the
moment estimate for the shape parameter a

1/2

lo = (IV. /2o ( 1vi)

The equation m2 = I 2 , then leads to

0o 2

Finally, the equation ml = M1 gives

1/2
X = m -W 1/ exp p

00 0

Thus, the vector of the parameters estimated by means of the moments is Po = (Xo,

CO, Jo).

If the value XN of the shift parameter X is already known, estimates oo and
po of a and p can be obtained from the first two moments. Elimination of p
immediately leads to

wo = 1 + m2 (m 1  N)2

With this value of oco the moment estimates for C and p follow from (IV. 1) and
(IV.2), respectively.

6



V. THE LOGARITHMIC LIKELIHOOD FUNCTION

In general terms, but on the basis of the notational conventions adopted in
Section !II, the likelihood function of a random variable X for which there exists a
data set {(xv, fav)} (v=1, .... M) and which is assumed to be distributed according to a
PDF f(x;P), which depends on a parameter vector P = (X Pl, P2 X...), 2 = shift, is
defined by

n [N(V f
L(:P) = II f .... = l P .....

V=1 V=1

(see, e.g., [7, Sec. 12.5], [8, Sec. 5.4].) For the lognormal PDF class () with P = (X,oj)
and with the abbreviation

Iog(xV - X) = Pv(X) , <x I

the function L(P) takes the particular form

L (P) z(2nF)N/ 2 exp -N [log a i fvP(>) + 2,2)- j f. ( )2]

The function

+()N1 log[I( 27r N/2 L(P)]

-logoCr- i f Vp(>) - (2a02)-1 ~f v(V,) (VP2 .1)

is called the logarithmic likelihood function (LLF) of the lognormal distribution class(n).

The problem now is to specify numerical values for the parameters X, a, and pJ
for which (") approximates the given data optimally. The maximum-likelihood principle
asserts that the optimal parameter values, if they exist, are the coordinates of the
point M = ( 5, , jJ) in the open parameter space P : (X < x1 , o" > 0, p E R) at which
the LLF +(P) takes its global maximum. The openness of the space P is essential in
this context as will be seen in Section VI.

7



VI. MAXIMUM-LIKELIHOOD PARAMETER ESTIMATION

The first approach is based on the derivative equations which result from (V.1).
A necessary condition on the parameters is that they satisfy the three partial
derivative equations a4/X = 0 , E+1ac = 0, and 8/aji = 0. They are of the form

a + ~-2 J
i =j , ep -p CJ P u)exp - p 0 ,(vi )-=1 =

_ 01 .0-3 f, (PV- J  = 0. (V].2)
=1 V'

8= v=2 1 (I

Equations (VI.2) and (VI.3) can be written as

02= f ), (VI.4)
V-1

= V Pv (x) (VI.5)
V=1

If the shift parameter X is known these two equations immediately represent
the solution of the ML parameter estimation problem on the basis of the derivative
equations. In this situation, equation (VI.1) becomes vacuous, and, for a given data set
{(xv, fap)} and known 2 = X", equation (IV.5) determines p , and (VIA), with ji =
determines 5 (8, Sec. 5.2.2, Table 5.11.

If the shift parameter X is considered as unknown (and thus, together with 0
and p , to be estimated from the given data), equations (VI.4) and (VI.5) must be
supplemented by equation (VI.1). However, by means of (VI.5) and (VI.4), p and a
can be eliminated from (VI.) so that only one equation in X remains. It is convenient
to perform this elimination in the LLF +(P) given in (V.1) directly. To simplify the
notation the following functions of X are introduced:

8



A(X) = i f P2(x) > 0
v=1

C(2C) = f VpVc) = ju
v=1

E(X) = -C'(X) = fvexp-P V() > 0
V=1

F(X) = -A (X) = f = f P (X ) exp-p (
2 V=1

Then (VIA) takes the form

C 2 = A(W) - C2 (X) > 0

Positivity of this Expression follows from Tchebychef's inequality [9, Thin. 431.
Elimination of p and c" (by means of the expressions given above) from (,o,j)
results in the function

For (D(X) to take a maximum, the derivative equation

(X) =(A-2) h(X) = 0

with

h(X) (A - C2 - C)E + F

must be satisfied. Therefore, since A - C2 > 0, the maximum-likelihood estimate X 1

for the shift parameter X must be a root of the equation

h(X) = (A- C2 - C)E - F = 0. (VI.6)

The following should now be observed. Since C(X) I - as X T x1 = rin (xv),

since A(X)C- 2 (X)- f 1
- 1 > I as X T x1 , and since log C(X)J increases more slowly

than IC(X) I , the rewritten version

9



[2 log IC (X) 1 l(AWC-2 X 1) + 2C+2

for 4() shows that 4(0) T 0 as X T x1 . As a consequence of this result it is seen
that the openness of the parameter space P { X < x1 , o" > 0, J E R ) is essential for
the identification of the location of the global maximum of +(P) in the interior of P
(see the last paragraph of Section V). Another consequence is that, if 4(..) takes a
maximum at all, it must, in the direction of decreasing X , take a minimum first.
Consequently, if the equation (VI.6) has a root at all, it has at least two. The correct
root relative to the estimation problem is the second one in the direction of decreasing
X.

If Xl is the correct root of (VI.6) the estimates pI and 0l for p and a
are obtained as

J1 = (X) [ (>,) -C2 (>" )] 1/2
J1l = C(X1) '(I=L A k ) '

respectively.

The second ML parameter estimation procedure for the lognormal distribution
class is based on direct optimization in the parameter space P of the LLF +(P) given
in (V.1). In optimization procedures it is customary to minimize the objective function.
Therefore, instead of maximizing +(P), the function -(P) will be minimized. The
resulting coordinates of the minimum of -(P) will be denoted by X2 , 02, P2"

Since both ML parameter estimation algorithms are based on the LLF 4(P) it is
obvious that the resulting parameter estimate vectors PI and P2 should agree within
the tolerances associated with the different numerical procedures. Agreement of the
vectors P1 and P2 indicates successful execution of the ML estimation process.

In the numerical implementation of the optimization ML estimation approach the
moment estimation vector Po = (Xo, c0o, po) (see Section IV) is used as the starting

vector for the iteration processes. If the value XM of X is known, the starting
vector is Po = (X*, o, po).

I0



VII. USER'S GUIDE

This section provides information on some of the numerical aspects of the
estimation algorithms. Information about their use is given on the diskette.

1. PreDaration of Data

According to Section III, the data input for the algorithms is a set ((xvl fav))
(v=l, ... , M) of coordinate pairs, ordered with respect to the abscissa values such that
x 1 < x2 < ... < xM. Unless the data are supplied in this particular form, a subroutine

does the ordering and frequency determination for given population data. For histogram
data, a subroutine calculates the xv's for given a E R and La > 0.

For computational reasons, it is convenient to translate the original xv values
along the coordinate axis of x

(a) Shift Parameter Unknown

The desired translation is accomplished by addition of -x 1 to each xV so
that the new x1 = 0. The advantage of this operation is to have a universal upper

bound, namely 0, for the unknown (translated) shift parameter X . The shape and
scale parameters o" and jp are not affected. The algorithms calculate the parameter
values X, o, and p and return the true parameter values Xt = X + xI , a and p l
relative to the original coordinate axis.

(b) Shift Parameter Known

Let XX be the known value of the shift parameter X . The desired
translation is accomplished now by addition of -X* to each xV. As before, o and p

are not affected. The algorithms calculate the values o and p with shift equal to
zero, and return the true values
Xt = X ,C I and p .

2. Moment Estimation

Moment estimation is straightforward according to the formulas given in
Section IV, provided a3 > 0. In the three-parameter case, the equation p(W.) z 0 is
solved to find its root wo > 1. This is done by means of root bracketing and a
modified version of Brent's method [10, Chap. 7.31.

3. Derivative Eouations ML Estimation

In the three-parameter case the equation h(X) = 0 (VI.6) is solved. Bracketing
of the desired root N I is achieved by calculation of h(Xv ) along the search sequence

XV I = ( 1 .6 18 )x v  (v = 0, 1, ...), with Xo = -0.05, until h chan~ges from negative to
positive values at two successive points. Once X I has been bracketed the modified
Brent's method is used to locate it.

11



With X1 calculated (or with X* known) the estimates jJ1 and a 1 are

calculated from (VI.5) and (VI.4), respectively.

4. Otimization ML Estimation

Optimization of the LLF (V.1) is accomplished by means of Powell's method [10,
Chap. 10.51 in both the three- and two-parameter cases. The vector Po = (X0 , ao, Jo)

(or Po = (X", 0o, jPo)) of the moment estimates is used to start the minimization
routine on the function -+(P). Once Powell's tolerance has been achieved the algorithm
continues by minimizing the function

Y (P) = (exp 10) [1 + exp-10 ((P) -P)

in which P is the final vector from Powell's routine on - (P). Use of the "amplifier"
function C(P) eliminates the effects of shallowness of -4(P) near its minimum and
increases the accuracy of the numerical values of the coordinates of the minimum of
-+)P).

If X is known to have the value X", the LLF + reduces to a function of only
two variables. To avoid additional subroutines for this situation, F(X",G,JI) is
maintained as a function of three variables, G, p, and X, by addition of the term
(X-X)2.

5. Freguencu Calculation

For histogram parameter estimation an auxiliary program is provided which
calculates two sets of expected absolute frequencies. One set corresponds to the
moment parameter estimates, the other to the ML estimates. (It should be remembered
that, under successful execution of the two ML estimation algorithms, the derivative
equations and the optimization estimates agree.) In both calculations the logarithm of
the PDF() is used to obtain the relative frequencies at the points xy . They are
subsequently converted into absolute frequencies.

To provide a basis for goodness-of-fit statements, chi-square values for the
individual class intervals are also calculated.

12



VIII. EXAMPLES

To demonstrate the versatility of the algorithms presented in this report five
examples are offered. They contain population and histogram estimates with shift
parameter unknown or known. Accompanying tables are given in Section IX.

N = 87 observations of annual 24-hour maximum rainfalls (in points) at Sidney,
Australia, over the period 1859-1945 are given in Table 1.1 [ 11]. Moment and ML
parameter estimates for the three unknown parameters are given in Table 1.2. The
subscripts 0, 1, and 2 refer to moments, derivative equations, and optimization,
respectively.

Grouping into histogram absolute frequency data has been performea on the data
of Table 1.1 in five different ways, Gv , as displayed in the second columns of Tables
1.4 Gv (v = 1 ... 5). The first column shows the class interval numbers v

Table 1.3 contains the class interval data for the groupings Gv (v = I ..., 5).

The resulting parameter estimates for the grouped histogram data are shown in
Tables 1.5 G (v 1= I ... , 5).

The estimated parameter values are used to calculate the expected absolute
frequencies from the PDF(*). For the moment estimates they are given in the third
columns of Tables 1.4 Gv, and for the ML estimates in the fifth columns. Next to the
calculated frequencies in Tables 1.4 Gv are shown the chi-square values. As
mentioned in the Introduction, no significance will be attached to them within the
framework of this report.

N = 20 random observations generated from a lognormal population with XK =
100, d = 0.4, and Jp = log 50 [1, Sec. 101 are displayed in Table 2.1. The three
corresponding sets of estimated parameters are given in Table 2.2.

Since it is known how the data of Table 2.1 have been generated it is possible
to process them under the assumption that the value X* = 100 for the shift parameter
is known. The resulting two-parameter estimates are shown in Table 2.3.

This example is on the diskette as RANDSAM.DAT.

This example deals with a total of N = 37 observations of frost-days in Munich
in the months of April over the period 1930-1966 [12, Ex. 42, Table 31] which contain
M = 18 distinct ones. The observations together with their frequencies are given in
Table 3.1.

13



The resulting parameter estimates are shown in Table 3.2.

A total of N = 885 observations of rainfall totals (in inch) for sets of four
consecutive months at Camden Square, London, over the period 1870-1943 [13, Ex.
7.5111 have been grouped into Ml = 17 class intervals [a - (v-i) Aa, a - vt.a) with a = 2,
Aa = 1. The data are given in Table 4.1.

The calculated parameter estimates are contained in Table 4.2.

The expected frequencies calculated from the parameters of Table 4.2 together
with the corresponding chi-square values are shown in Table 4.1

It is reasonable to assume in the present example that the probability of no
rainfall at the Camden Square location over the given period is zero. In other words, it
is reasonable to assume that the shift parameter X is known and that X = X' = 0.
The corresponding two-parameter estimates are given in Table 4.3.

Table 4.4 shows the expected frequencies for the two-parameter case.

This example is on the diskette as BROOKS.DAT.

This example concerns weekly precipitation sums observations (in 10-2 inch) at
Kwajalein, IS, for the summers 1949-1958 (14, p. 47, Ex. 101. The total number of
observations is N = 130. They have been grouped into M = 17 class intervals [a +
(v-l)Aa, a + vAa) with a = 0, Aa = 50. Table 5.1 shows the given data. The estimated
parameter values are displayed in Table 5.2. The corresponding frequencies are given in
Table 5.1.

The estimates for 0" and jp under the assumption that the shift parameter is
zero are shown in Table 5.3. The expected frequencies in this case are displayed in
Table 5.4.
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IX. TABLES
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TABLE 1.1. Annual Maximum Twenty-Four Hour Rainfalls (in Points)
at Signey, Australia, 1859-1945

370 252 662 190 325 393 395 301

565 618 445 403 324 280 890 392
389 281 489 ?53 569 204 425 648
433 64S 485 468 283 275 836 S66
295 434 330 310 236 48? 2?3 605
301 423 441 63? 157 4?? 364 363
362 571 177 475 ?8 441 652 33?
325 342 316 653 488 414 418 3?4
258 188 484 459 489 239 391 302
780 322 380 335 263 216 339 579
230 333 154 1105 330 192 420

TABLE 1.2. Three-Parameter Estimates

LUG-NORMAL ISTFRIBUTiON CALCULA[lONS
Data file is RAINAUS.UAT

Number of parameters is 3

THE MOMENT ESTIMATES FOR THE LOG-NORMAL DISTRIGUllUN

Lcmbda(0) - -. 722546E+002
Bigma[O] = .344053E+000

MuO) = .615229E+001

THE DERIVATIVE ESTIMATES FOR THE LOG-NURMAL D1ST
Lambda(1) - -. 39449)L+001

Sigma(1) = .400045E+000
Mul 1) .5984S2L+001

THE PUWELL LST1MATL i FUH 1HL LOU-NUHMAL L;lF,T

Lambdd(2J - -. 36939?E+001
Sigme(2) = .400101E+000
Mu(2) .59843?E+001
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TABLE 1.3. Class Intervals and Numbers of Classes for Groupings Cv(v-l, ... ,5)

O 1  G2  03 G4 35

a 150 125 150 100 125

Aa 100 100 50 75 75

M 10 10 20 14 14

TABLE 1.4G1 . Grouped Frequency Data for Grouping Cl

LOG-NOHMAL DISTRIBUTION CALCULATIONS
Uata file is Ingdsetl.dat

Moment Estimate Max Likelihood Lst
V fabs) f( cal) X**2 fHal Cd!)

1 11 10.64 .01 10.83 .0
2 23 21.05 .18 24.62 .11
3 23 20.97 .20 20.95 .20
4 10 14.92 1.63 13.38 .85
b 10 8.88 .14 7.92 .68
6 4 4.79 .12 4.30 .02
? 4 2.42 1.02 2.38 1.11
8 1 1.19 .03 1.32 .08
9 0 .58 .58 .?5 .75
10 1 .28 1.87 .43 ,'9

Totals 87 85.71 86.68
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TABLE 1.4G 2 . Grouped Frequency Data for Grouping G 2

LOG-NORMAL DISTRIBUTION CALCULATIONS
Data file is lngdset2.dat

Moment Estimate Max Likelihood Est
v f(abs) f(cal) X**2 f(cal) X**2
1 8 7.56 .03 ?.10 .11
2 18 18.90 .04 20.67 .35
3 25 21.69 .50 22.23 .35
4 lb 16.?6 .03 16.09 .00
5 7 10.41 1.11 9.?0 .?5

6 ? 5.68 .30 5.34 .51
7 3 2.88 .01 2.82 .01
8 2 1.39 .2? 1.46 .20
9 a .66 .66 .75 .?5

10 1 .31 1.58 .39 .97
Totals 8? 86.23 86.55

TABLE 1.4G 3. Grouped Frequency Data for Grouping G 3

LOG-NORMAL DISTRIBUTION CALCULATIONS
Data file is Ingdset3.dat

Moment Estimate Max Likelihood Est
v f(abs) f(cal) X**2 f(cai) X**2
1 6 3.62 1.56 3.29 2.23
2 5 ?.13 .64 ?.54 .85
3 8 10.00 .40 10.78 .?2
4 15 11.33 1.19 11.94 ./8

5 12 11.13 .0? 11.36 .04
6 11 9.92 .12 9.82 .14
1 10 8.25 .3? /.98 S1
8 0 6.53 6.53 6.22 6.22
9 5 4.99 .00 4.'21 .02
10 5 3.70 .45 3.50 .64
11 3 2.?0 .03 2.57 .0?
12 1 1.Y4 .45 1.87 .40
13 3 1.38 1.91 1.35 2.01
14 1 .9? .00 .98 .00
15 1 .68 .15 .70 .13
16 0 .48 .48 51 .51
17 0 .33 .33 .37 .39
18 0 .23 .23 .26 .26
19 0 .16 .16 .19 .19
20 1 .11 6.9? .14 5.32

Totals 87 85.61 86.08

19



TABLE 1.4G4 . Grouped Frequency Data for Grouping G4

LOG-NORMAL DISTRIBUTION CALCULATIONS

Data file is Ingdset4.dat

Moment Estimate Max Likelihood Est

v f(absJ f(cal) X**2 f(calJ X""2

1 2 2.51 .10 1.88 .01

2 9 8.90 .00 9.19 .00

3 15 14.89 .00 15.85 .05

4 20 16.54 .?2 17.03 .52

5 13 14.42 .14 14.28 .11

6 8 10.81 .73 10.41 .56

? ? 7.34 .02 6.98 .00
8 6 4.66 .38 4.45 .54

9 3 2.84 .01 2.?5 .02

10 2 1.68 .06 1.67 .06

11 1 .9? .00 1.00 .00

12 0 .56 56 .60 .60

13 0 .32 .32 .36 .3b

14 1 .18 3.74 .22 2.84

rotals 89 86.62 8b.65

TABLE 1.4G 5 . Grouped Frequency Data for Grouping G 5

LUG-NOHMAL UISTRIBUTION CALCULATIONS

Data file is ingdsetS.dat

Moment Lstimate Max Likelihood Lst

v f(abs) f(cal) X**2 +(cal) X*2

1 6 4.39 b0 4.18 .?9

2 8 12.35 1.53 12.53 1.64

3 20 16.99 .54 17.26 .44

4 17 16.31 .03 lb.40 .02

5 16 12.83 .?8 12.77 .82

6 4 8.97 2.76 8.87 2.6d

? 6 5.84 .00 5.76 .01

8 4 3.64 .04 3.59 .05

9 3 2.21 .29 2.19 .30

10 1 1.32 .08 1.31 .01

11 1 .?8 .06 .?8 .06

12 0 .46 .46 .47 .47

13 0 .27 .27 .28 .28

14 1 .16 4.43 .17 4.1d

Totals 89 86.49 86.56
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TABLE 1.5G1 . Three-Parameter Estimates for Grouping GI

LO-G-NORMAL DISTRIBUTIUN CALCULAIONb
Data file is LNGL~T1.DAT

Number of parameters is 3

THE MOMENT ESTIMATES FOR THE LOG-NORMAL DISTRIBU[IUN

Lambda(O) - -. 838910E+002

Gigma(O) = .342081E+000

Mu(kO) - .618104E+001

THE DERIVATIVE LSTIMArES FOH (HE LOG-NORMAL ijl.b

Lambda( 1) = .?31???E+002
Si~ma( I) = .5560+0

Mu(1J .5?4925E+001

THE POWELL ESTIMATES FOR THE LOG-NORMAL D181

Ldrnbda(2J - .?31'?76E+00J2

Silma(2)=

Mu(2) - .5?4925L+0J01

TABLE 1.5G 2. Three-Parameter Estimates for Grouping G2

LOG-NORMAL. DIsrH1BUTIuN CALCULATIONS
Da~ta file is LNGOSET2.OAI

Number of' parameters is 3

THE MOMENT ESTIMATES F-OH THE LOU-NlUHM~ i_ IlUIJ
Lambda(s) - -122396E+003
Sigma(O) = .319b4J-f0e0
Mu(s) - .625996E+-001

I-HE DERIVATIVE ES1IMAlES FOR THE LOG-NUJHMAL 01--I
Lambdal1) -. 1419b4E+002
bigma( 1) = .3981SYL+000

THE POWELL ESTIMATES 1-0R THE LOG-NOHMAL Ulbf
Lambdat ) -. 1 41Y64E+002

.',i gma L ) .3981b9L+000
Miii?) = .601291E+011
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TABLE 1.5G 3. Three-Parameter Estimates for Grouping G3

LOG-NORMAL DISTRIBUTION CALCULATIONS
Data file is LNGDGET3.DAT

Number of paradmeters is 3

~~~~~~~~~9 it~* i,** ** it** i* * * * ~~~~ . .~.

THE MOMENT ESTIMATES FOR THE LOG-NUHMAL DISTRIBUTION
Lambda(O) = -.574054E+002
Sigma(s) = .359288E+000
MU(0) = .611534L+001

THE DEI-UVATIVE E8rlMAFLG I-IO- THL LOG-N~i-MAL D1i~
Lambda( 1) = .1S844E'-0k2
b~igmaL ) = .422920L+~0
MU(1) = S92810E+001

THE POWELL ESTIMATES FOR THE LOG-NORMAL DIST
Lambda(2) = .158448E+002
Sigma(2) = .422920E+000
Mu(2) = .592810E+001

* ** * *t *I il It *t * ** ** * * *t *t it it it* ** * * . i.4.4.8 .8t it. .

TABLE 1.5G4. Three-Parameter Estimates for Grouping G4

LOG-NORMAL DiSTRiEIUTlON CALCULATILJNb
Data file is LNGUSE-14.DAT

Number of parameters is 2

THE MOMENT' ESTIMATES FOR THE LLJC-NURMML Uibr~ibu[ILjN
Lambda(0) = -. 104931E+003
SigmaL&Oj = .3260'9E+000
Mu(s) - .6229?3E+001

i it * *~ 41 * * *t *" it i,*t* * it *t it*****4

THE DERIVATIVE ESTIMATES FOR iHE LOG-NURMAL DIST
Lambda( 1) = - .265338E+002
Sigma(l =) .382666E+000
Mu( 1) .605208L+001

THE POWLLL ESTIMATES F-OH THFE LUUi-NUHMAL IjiIT
Lambda(2J - -. 265343E+OOL
Sigma(2) = .382665L+000
Mu(2) .605209E+00*1
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TABLE 1.5G 5 . Three-Parameter Estimates for Grouping G5

LOG-NORMAL OISTRIuUTION CALCULATIUNI
Data file is LNGDSETS.UAT
Number of parameters is 3

THE MOMENT ESIIMATES FOR THE LOG-NORMAL OiUJIRIU]IUN
Lambda(0) = -. 436832L+02

Sigma(O) = .390006E+000
Mute) .6U961L+001

1HE OERIVAIIVE ESTIMAIES FOR THE LOG-NORMAL ISI
Lambda( 1) - -. 246130E+002
Sigma(1) = .384999E+00
Mu(1) .603142E+001

*HE POWELL ESTIMATES FOH THE LOG-NORMAL 0IS1
Lambdad2) = -.246162L+0 2
Sigma(21 .38499?E+000
Mu(2) = .603143E+001
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TABLE 2.1. A Random Lognormal Sample

148.290 184.101 135.880 122.211

133.143 144.328 166.475 132.338

132.971 156.680 174.800 131.3?b
164.304 128.709 163.070 168.S54

145.788 155.369 201.415 157.238

TABLE 2.2. Three-Parameter Estimates

LOG-NORMAL DlGTH1lUUT iN CALLULAT IONS

Data file is RANOSAM.DAT
Number of' parameters i9 3

HL MOME~NT LSTlMATES FOH THE LUG-NUHMAL Uj1DTHIbULJuN

Lambda(O~) = .?2','27E+002
bigmato) = .241002E+000
Mu(s) . 434?08E+001

[HE DERIVATIVL ESTIMATES POR IRE LOG-NuRMA_ L1:31

Lambda(l1) = . 1 2'21Li+0f3
Sigmal) = .604313E+000
Mu( 1) = .33')31vE+001

IHE POWELL LbrIMATEG FUR IHE LOG-NORMAL Di1W

Lambda(2J = .11V'Th4E+003
Sigma(2) = .60589YE+k000
Mu(2) - .339)039E+001
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TABLE 2.3. Two-Parameter Estimates

LUG-NORMAL 0lSTRIBUTION CALCULATIUNb
DJata file is RANOSAM.DAT

Number of parameters is 2

-HE MOMENT ESTIMATES FOR THE LUc,-NURMAL 0lIHijU1IN

Lambda(OJ .1000+0

Sigma(O).129181E+000
MU) - .501'278L+001

rHE DE.RIVATIVEL ESTIMATLS i-L)R THL LUG-NUHMAL Ul:+31

Lambda( 1) -1~000E+0~03

b~igma. ) = .3b5203L4000

Mw. 1) -. 3890 15E+001

THE POWELL ESTIMAI'ES FOR THE LOG-NORMAL DiSI

Lambda(2) .10000E+00~3

Sigma(2) = .365203E+000
Mu(2J .3891E+001

25



TABLE 3.1. Number of Frost-Days in the Months of April, 1930-1966
and Their Frequencies

0 1 2 2 2 2 2 2
3 3 3 3 4 4 4 4
4 4 5 5 S 6 6 9
7 8 8 8 8 9 99

10 10 10 12 1?

TABLE 3.2. Three-Parameter Estimates

LOG-NORMAL DISTRIBUrION CALCULATIUNG
Data file is LNUSEI'4.DAT

Number of parameters is 3

THE MOMENT ESTIMATES FOR 1IHE LOU-NORMAL EDiSTRIBUV10N
Lambda(0J = -.639,374E+001
Sigma(0) = .288622E+000
Mu(0) = .244448E+001

TH-E DERIVAIVE ESTIMATES FOR THL LOG-NORMIAL DiSI
Lambda( 1) = - .302086L+0012

sigma( 1) = .409262E+000
MU( 1) .20?493bE+001

THL POWELL ESTlMATLb i-UH 1HE LUG-NUHMiNL uiblV

Lambda(2) = -. 302086L+001
Gigrna(2J = .409262L+000
Mu(2J .20?493E+l0l

26



TABLE 4.1. Rainfall Totals (in Inch) for Sets of Four Consecutive
Months, Camden Square, London, 1870-1943

LOG-NORMAL DISTRIBUTION CALCULATIONS
Data file is brooks.dat

Moment Estimate Max Likelihood Lst
v f(abs) f(cal) X**2 f(cal) X**2

1 9 4.7 3.75 4.69 3.95

2 15 19.92 1.21 19.78 1.lb

3 48 50.43 .12 50.35 .11

4 81 89.11 .94 89.19 75

5 142 120.66 3.77 120.85 3.70

6 125 133.54 .55 133.73 .57
? 129 126.52 .05 126.63 .04

8 109 106.15 .08 106.16 .0
9 76 80.89 .30 8e.4 .29

10 56 57.07 .02 57.01 .02
11 36 37.86 .09 3?.80 .09

12 22 23.88 .15 23.84 .14

13 13 14.46 .15 14.44 .14

14 12 8.47 1,47 8.46 1.48

15 5 4.83 .01 4.83 .01
16 4 2.69 .63 2.69 .63

17 3 1.48 1.57 1.48 1.57

Totals 885 882.79 882,?5
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TABLE 4.2. Three-Parameter Estimates

LOG-NORMAL DISTRIBUTION CALCULATIONS
Uata file is GROOKS.DAr

Number of parameters is 23

THE MOMENT ESTIMAFES FOR THE LOG-NORMAL DITRIBUliLI

LambdeakO) = -. 438818E+001

sigma(@J .215054E+~0
Mute) = .253126E+001

THE DERIVATIVE ESTIMATES FOR THL LOU-NORMAL Ulbf
Lambda( 1) = -. 431653Ei-001
sign.i( 1) = .216064E+000

Mu( 1J .2S2544E+001

THL POWELL E TIMAIEG FUR THE LOG-NORMAL DIST

Lambda(2) -. 431654E+0~01

Sigma(2) .216064E+e000
Mut2J .252544E+001
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TABLE 4.3. Two-Parameter Estimates

LOG-NOJMAL D1STRIBUTION CALUULATIONG

Data fiie is BROOKS.OAT
Number of parameters is 2

IHE MOMENT LSTlMATES FOH THE LOG-NU14MAL UlbIHI-UI]ON

Lambda) = .OOOOOL+000
Sigma(0) = .32190bL+000

Muto) - .2oB539E+001

THE OERIV~AI1VE ESTIMATES FOR THE LUG-NORMAL DIST

Lambda(l = O.OOOOL+00

Sigma( I = .34154SE+000
Mu( lJ .203132E+001

THE POWELL ESTIMATES FOR THE LOG-NORMAL DIST

Lambda(2) = OOOOOOE+000

Sigma(2) = .341545E+000
Mu(2) = .2081J2E+001
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TABLE 4.4. Expected Frequencies for Two-Parameter Estimates

LOG-NOHMAL DISTRIBUTION CALCULATIONS
Data file is brooks.dat

Moment Estimate Max Likelihood Est

v f(abs) f(cal) X**2 f(cal) X**2

1 9 .58 122.01 1.23 49.09

2 15 10.88 1.56 15.57 .02

3 48 47.45 .01 55.07 .91

4 81 99.01 3.28 102.35 4.46

5 142 135.60 .30 131.?6 .80

6 125 143.13 2.30 135.25 ?7

? 129 127.51 .02 119.83 .?0

8 109 101.29 .59 96.14 1.72

9 76 74.31 .04 ?2.02 .22

10 56 51.54 .39 51.41 .41

11 36 34.35 .08 35.47 .01

12 22 22.24 .00 23.88 .15

13 13 14.12 .09 15.81 .50

14 12 8.83 1.14 10.34 27

15 S 5.47 .04 6.1 .43

16 4 3.3? .12 4.33 .02

17 3 2.06 .43 2.?9 .02

Totals 885 881.73 879.95
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TABLE 5.1. Weekly Precipitation Sums (in 10-2 inch), Kwajalein, IS,
1949-1958

LOG-NORMAL DISTRIBUTION CALCULATIONS
Data file is fq.kwa

Moment Estimate Max Likelihood Est
v f(abs) f(cal) X**2 f(cal) X**2

1 8 10.20 .48 8.84 .8
2 25 15.68 5.54 22.26 .34
3 21 18.08 .4? 23.01 .18
4 15 17.58 .38 18.98 .84
5 18 15.36 .45 14.48 .86
6 9 12.51 .99 10.?3 .28
? 8 9.73 .31 9.89 .00
8 6 ?.33 .24 5.81 .01
9 5 5.40 .03 4.30 .12

10 4 3.92 .00 3.20 .20
11 3 2.82 .01 2.40 .15
12 1 2.02 .51 1.82 .37
13 1 1.43 .13 1.39 .11
14 1 1.02 .00 1.07 00
15 2 .72 2.25 .83 1.64
16 2 .52 4.28 .65 2.80
17 1 '3? 1.09 .51 .46

Totals 130 124.68 128.19
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TABLE 5.2. Three-Parameter Estimates

LOG-NORMAL UISIRIBUJ ION CALCULAT IONL,
Data tile is FQ.KWA

Number of parameters is 3

CHE MOMENT ESTIMATES FOH THE LOG-NORMAL DISIRIEUTION

Lambda(O) = -. 16499L±00j

bigma(0J = 407900
Mu(O) = .5Y3S04L+001

HE ULRIVAFiVL LSIIMATEb FUR IRE LUU-NURjMAL U1lni
Lambdal) = -. 2169r._JEiE02
:-igrnla( 1. ii;60
Mu(1J .530061E+00I1

]HE POWELL L~1iMATEb FOR THE LOG-NORMAL D~
Lamt~da( 2) = -. 2169211E+00,:

Sigmai.2) = .694260E+000
Mu(te) .530061E+001
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TABLE 5.3. Two-Parameter Estima-es

LUG-NOVIMAL DISTibU[ION CALLXJLArlON63

Data f2ile is FQA'ZWA
Number 01' parameters is 2

THE MOMENT ES71MAVES F:OR THE LOG-NORMAL DIb1RIBUTION

Lambda(OJ =OOOE00

bigma(Ok) = .6bY/SJ,2Lr000
Mu(0J - .521189E+001

IHE DERIVATIVE ESTIMATES FOR THE LOG-NURMAL 1)1ST

Liml.1 .819,/b3L+000

Mu(1) = .514332L+0,01

THE POWELL ES1IMA1ES I-OR THE LOG-NOHMAL Ui-lT
Ldmbfda(2j' .0000 0

SigrypadL2j .-463 +

Mu%, Li = .514332~E+001
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TABLE 5.4. Expected Frequencies for Two-Parameter Estimates

LOG-NORMAL DISTRIBUTIUN CALCULATIONS

Data file is fq.kwa

Moment Lstimate Max Likelihood Lst

v f(ebs) f(call X**2 f(cal) X--2
1 8 2.02 17.66 8.04 .00

2 25 21.35 .62 25.39 .1

3 21 26.06 .99 23.51 .27

4 15 21.82 2.13 18.0? .52

5 18 16.25 .19 13.30 1.6b

6 9 11.64 .60 9.?4 .Ob

2 8 8.25 .01 ?.1? .10

8 6 5.85 .00 5.34 .0

9 5 4.17 .16 4.03 .24

10 4 3.01 .33 3.0? .28

11 3 2.19 .30 2.3? .17

12 1 1.61 .23 1.85 .39

13 1 1.19 .03 1.45 .14

14 1 .89 .01 1.16 .02

15 2 .67 2.60 .93 1.24

16 2 51 4.29 .?5 2.09

17 1 .40 .92 .61 .25

Totals 130 127.91 126.'27
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